Abstract

Flexible and printed perovskite solar cells (PSCs) fabricated on lightweight plastic substrates have many excellent potential applications in emerging new technologies including wearable and portable electronics, the internet of things, smart buildings, etc. To fabricate flexible and printed PSCs, all of the functional layers of devices should be processed at low temperatures. Tin oxide is one of the best metal oxide materials to employ as the electron transport layer (ETL) in PSCs. Herein, the synthesis and application of SnO2 quantum dots (QDs) to prepare the ETL of flexible and printed PSCs are demonstrated. SnO2 QDs are synthesized via a solvothermal method and processed to obtain aqueous and printable ETL ink solutions with different QD concentrations. PSCs are fabricated using a slot-die coating method on flexible plastic substrates. The solar cell performance and spectral response of the obtained devices are characterized using a solar simulator and an external quantum efficiency measurement system. The ETLs prepared using 2 wt% SnO2 QD inks are found to produce devices with a high average power conversion efficiency (PCE) along with a 10% PCE for a champion device. The results obtained in this work provide the research community with a method to prepare fully solution-processed SnO2 QD-based inks that are suitable for the deposition of SnO2 ETLs for flexible and printed PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.