Abstract

While InGaAs-based focal plane arrays (FPAs) provide excellent detectivity and low noise for SWIR imaging applications, wider scale adoption of systems capable of working in this spectral range is limited by high costs, limited spectral response, and costly integration with Si ROIC devices. RTI has demonstrated a novel photodiode technology based on IR-absorbing solution-processed PbS colloidal quantum dots (CQD) that can overcome these limitations of InGaAs FPAs. We have fabricated devices with quantum efficiencies exceeding 50%, and detectivities that are competitive with that of InGaAs. Dark currents of ~2 nA/cm2 were measured at temperatures compatible with solid state coolers. Additionally, by processing these devices entirely at room temperature we find them to be compatible with monolithic integration onto readout ICs, thereby removing any limitation on device size. We will show early efforts towards demonstrating a direct integration of this sensor technology onto a Si ROIC IC and describe a path towards fabricating sensors sensitive from the visible to 2200 nm at a cost comparable to that of CMOS based devices. This combination of high performance, dramatic cost reduction, and multispectral sensitivity is ideally suited to expand the use of SWIR imaging in current applications, as well as to address applications which require a multispectral sensitivity not met by existing technologies.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call