Abstract

Present investigation demonstrates a very simple seed-mediated route, using hydroxypropyl methyl cellulose (HPMC) as stabilizing agent, for the synthesis of silver nanodiscs in aqueous solution. Central to the concept of seed-mediated growth of nanoparticles is that small nanoparticle seeds serve as nucleation centres to grow nanoparticles to a desired size and shape. It is found that the additional citrate ions in the growth solution play the pivotal role in controlling the size of silver nanodiscs. Similar to the polymers in the solution, citrate ions could be likewise dynamically adsorbed on the growing silver nanoparticles and promote the two-dimensional (2D) growth of nanoparticles. Morphological, structural, and spectral changes associated with the seed-mediated growth of the nanoparticles in the presence of HPMC are characterized using UV–vis and TEM spectroscopic studies. Metal nanoparticles have received increasing attention for their peculiar capability to control local surface plasmon resonance (LSPR) when interacting with incident light waves. Extensive simulation study of the UV–vis extinction spectra of our synthesized silver nanodiscs has been carried out using discrete dipole approximation (DDA) methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.