Abstract
The aim of this paper is to obtain an existence result for impulsive differential inclusions of first order with boundary conditions in Hilbert spaces under a hypothesis of integrability in the Henstock–Lebesgue sense for the multifunction on the right-hand side. The proof is based on the assumption that there exists a solution tube for the inclusion taken under consideration (this novel concept which generalizes the extensively used notions of upper and lower solution was adapted to the present setting). Finally, a compactness property is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.