Abstract

Abstract We solve a state reconstruction problem which arises in quantum information and which generalizes a problem introduced by Vaidman, Aharonov, and Albert in 1987. The task is to correctly predict the outcome of a measurement which an experimenter performed secretly in a lab. Using tomographic reconstruction based on summation over lines in an affine geometry, we show that this is possible whenever the measurements form a maximal set of mutually unbiased bases. Using a different approach we show that if the dimension of the system is large, the measurement result as well as the secretly chosen measurement basis can be inferred with high probability. This can be achieved even when the meanspirited King is unwilling to reveal the measurement basis at any point in time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.