Abstract

Low frequency gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA), will have to contend with large foregrounds produced by millions of compact galactic binaries in our galaxy. While these galactic signals are interesting in their own right, the unresolved component can obscure other sources. The science yield for the LISA mission can be improved if the brighter and more isolated foreground sources can be identified and regressed from the data. Since the signals overlap with one another, we are faced with a 'cocktail party' problem of picking out individual conversations in a crowded room. Here we present and implement an end-to-end solution to the galactic foreground problem that is able to resolve tens of thousands of sources from across the LISA band. Our algorithm employs a variant of the Markov chain Monte Carlo (MCMC) method, which we call the blocked annealed Metropolis-Hastings (BAM) algorithm. Following a description of the algorithm and its implementation, we give several examples ranging from searches for a single source to searches for hundreds of overlapping sources. Our examples include data sets from the first round of mock LISA data challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.