Abstract

This paper presents a practical method of numerical analysis for boundary shape optimization problems of linear elastic continua in which natural vibration modes approach prescribed modes on specified sub-boundaries. The shape gradient for the boundary shape optimization problem is evaluated with optimality conditions obtained by the adjoint variable method, the Lagrange multiplier method, and the formula for the material derivative. Reshaping is accomplished by the traction method, which has been proposed as a solution to boundary shape optimization problems of domains in which boundary value problems of partial differential equations are defined. The validity of the presented method is confirmed by numerical results of three-dimensional beam-like and plate-like continua.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.