Abstract

The paper deals with a zero-sum differential game in which the dynamical system is described by a fractional differential equation with the Caputo derivative of an order $\alpha \in (0, 1).$ The goal of the first (second) player is to minimize (maximize) the value of a given quality index. The main contribution of the paper is the proof of the fact that this differential game has the value, i.e., the lower and upper game values coincide. The proof is based on the appropriate approximation of the game by a zero-sum differential game in which the dynamical system is described by a first order functional differential equation of a retarded type. It is shown that the values of the approximating differential games have a limit, and this limit is the value of the original game. Moreover, the optimal players' feedback control procedures are proposed that use the optimally controlled approximating system as a guide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.