Abstract

Given the recognized major problem of microbial drug resistance for human health, new metal-based drugs have been currently explored for their antimicrobial properties, including gallium-based compounds as potential metallophores that could perturb Fe’s interactions with proteins. Herein we have designed and synthesized two bis-kojate ligands (named L4 and L6) and studied their Ga(III) complexes for their physico-chemical and biological properties. In particular a detailed study of their complexation properties in aqueous solution, showed equilibrium models with formation of quite stable dinuclear 2:3 metal:ligand complexes, though with different stability. Solid state complexes were also prepared and characterized and complementary DFT studies indicated that [Ga2(L4)3] complex, with higher stability, seems to adopt a three-ligand bridging conformation, while that for L6 adopt a one ligand bridging conformation. Preliminary investigation of the antibacterial activity of these gallium complexes showed antipseudomonal activity, which appeared higher for the complex with L4, a feature of potential interest for the scientific community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call