Abstract

An increase in the rate of protein synthesis is found to be accompanied by phosphorylation of the 40S ribosomal protein S6. Treatment of S6 by cyanogen bromide produced three fragments, and one of the fragments of S6, which is a C-terminal portion of S6 (M(r) approximately 4,000), contains all phosphorylation sites of S6. The C-terminal fragment of S6 contains seven serines. S6 kinase phosphorylates S6 specifically, i.e. five serines in the C-terminal of S6 are phosphorylated. The three-dimensional structure of S6 peptide was studied in 50% trifluoroethanol/50% H2O solution by 1H NMR with combined use of distance geometry and restrained molecular dynamics calculations. NMR results indicated that it takes an alpha-helix between Glu5 and Arg21 and a distorted helical structure for the following three residues, but no rigid structure was present from Ser25 through the C-terminus and for the N-terminal region (Lys1-Lys4). The specificity of the phosphorylation of the peptide is discussed from a structural aspect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.