Abstract
The luzopeptin-d(C-A-T-G) complex (1 drug/duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. One equivalent of luzopeptin binds to the self-complementary tetranucleotide duplex with the 2-fold symmetry of the antitumor agent and the DNA oligomer retained on complex formation. We have assigned the exchangeable and nonexchangeable proton resonances of luzopeptin and the d(C-A-T-G) duplex in the complex and identified the intermolecular proton-proton NOEs that define the alignment of the antitumor agent at its binding site in duplex DNA. The analysis was greatly aided by a large number of intermolecular NOEs involving exchangeable protons on both the luzopeptin and the DNA in the complex. The molecular dynamics calculations were guided by 140 intramolecular nucleic acid distance constraints, 74 intramolecular luzopeptin distance constraints, and 96 intermolecular distance constraints between luzopeptin and the nucleic acid protons in the complex. The quinoline rings of luzopeptin bisintercalate at d(C-A).d(T-G) steps in the d(C-A-T-G) duplex and sandwich two Watson-Crick A.T base pairs between the bisintercalation site. The long axis of the quinoline rings are collinear with the long axis of the flanking Watson-Crick C1.G4 and A2.T3 base pairs such that the OCH3-6 group is directed toward the C1-A2 step and the OH-3 group is directed toward the T3-G4 step in the complex. The quinoline chromophore stacks with purines on both strands, with the quinoline A ring stacked on A2 and the quinoline B ring stacked on G4 in the complex. The C1.G4 and A2.T3 base pairs that flank the intercalation sites are parallel to each other with partial overlap of T3 and G4 in the T3-G4 step but no overlap of C1 and A2 in the C1-A2 step in the complex. The cyclic depsipeptide ring of luzopeptin is positioned in the minor groove of the d(C-A-T-G) duplex with the oligopeptide and oligonucleotide chains running antiparallel to each other. The cyclic depsipeptide backbone of luzopeptin exhibits cis peptide bonds at Pyr-Gly and Gly-Sar steps in the luzopeptin-d(C-A-T-G) complex in solution, in contrast to all trans peptide bonds for free luzopeptin in the crystalline state.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.