Abstract

The amino acids (residues 39-51) responsible for the interaction between the first intracellular loop (iLP1) of the human prostacyclin receptor (IP) and G alpha s protein have been identified [Zhang, L., Huang, G., Wu, J., and Ruan, K. H. (2005) Biochemistry 44, 11389-11401]. To further characterize the structural/functional relationship of the iLP1 in coupling with the G alpha s protein, the solution structures of a constrained peptide (IP iLP1) that mimicked the iLP1 of the IP receptor in the absence and presence of a synthetic peptide, corresponding to the C-terminal 11 residues (Q384-L394 in the protein sequence) of the G alpha s protein (G alpha s-Ct), were determined by 2D 1H NMR spectroscopy. The NMR solution structural model of the iLP1 domain showed two turn structures in residues Arg41-Ala44 and Arg45-Phe49 with the conserved Arg45 at the center. The conformational change of the side chain of the Arg45 was observed upon the addition of the G alpha s-Ct peptide. On the other hand, the solution structural models of the G alpha s-Ct peptide in the absence and presence of the IP iLP1 peptide were also determined. The N-terminal domain (Q384-Q390 in the G alpha s protein) of the peptide adopted an alpha-helical conformation. However, the helical structure of the C-terminal domain (Q390-E392 in the G alpha s protein) of the peptide was destabilized upon addition of the IP iLP1 peptide. These structural studies have implied that there are direct or indirect contacts between the IP iLP1 domain and the C-terminal residues of the G alpha s protein in the receptor/G protein coupling. The possible charge and hydrophobic interactions between the two peptides were also discussed. These data prompted intriguing speculations on the IP/G alpha s coupling which mediates vasodilatation and inhibition of platelet aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call