Abstract

The carboxy-terminal region of the KCNH family of potassium channels contains a cyclic-nucleotide binding homology domain (CNBHD) that is important for channel gating and trafficking. The solution structure of the CNBHD of the KCNH potassium of zebrafish was determined using solution NMR spectroscopy. This domain exists as a monomer under solution conditions and adopts a similar fold to that determined by X-ray crystallography. The CNBHD does not bind cAMP because residue Y740 blocks the entry of cyclic-nucleotide to the binding pocket. Relaxation results show that the CNBHD is rigid except that some residues in the loop between β6 and β7 are flexible. Our results will be useful to understand the gating mechanism of KCNH family members through the CNBHD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call