Abstract

Protein disulfide isomerase is the most abundant and best studied of the disulfide isomerases that catalyze disulfide bond formation in the endoplasmic reticulum, yet the specifics of how it binds substrate have been elusive. Protein disulfide isomerase is composed of four thioredoxin-like domains (abb'a'). Cross-linking studies with radiolabeled peptides and unfolded proteins have shown that it binds incompletely folded proteins primarily via its third domain, b'. Here, we determined the solution structure of the second and third domains of human protein disulfide isomerase (b and b', respectively) by triple-resonance NMR spectroscopy and molecular modeling. NMR titrations identified a large hydrophobic surface within the b' domain that binds unfolded ribonuclease A and the peptides mastoparan and somatostatin. Protein disulfide isomerase-catalyzed refolding of reduced ribonuclease A in vitro was inhibited by these peptides at concentrations equal to their affinity to the bb' fragment. Our findings provide a structural basis for previous kinetic and cross-linking studies which have shown that protein disulfide isomerase exhibits a saturable, substrate-binding site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call