Abstract

UNCoordinated-6 (UNC-6) was the first member of the netrin family to be discovered in Caenorhabditis elegans. With homology to human netrin-1, it is a key signaling molecule involved in directing axon migration in nematodes. Similar to netrin-1, UNC-6 interacts with multiple receptors (UNC-5 and UNC-40, specifically) to guide axon migration in development. As a result of the distinct evolutionary path of UNC-6 compared to vertebrate netrins, we decided to employ an integrated approach to study its solution behavior and compare it to the high-resolution structure we previously published on vertebrate netrins. Dynamic light scattering and analytical ultracentrifugation on UNC-6 (with and without its C-domain) solubilized in a low-ionic strength buffer suggested that UNC-6 forms high-order oligomers. An increase in the buffer ionic strength resulted in a more homogeneous preparation of UNC-6, that was used for subsequent solution x-ray scattering experiments. Our biophysical analysis of UNC-6 ΔC solubilized in a high-ionic strength buffer suggested that it maintains a similar head-to-stalk arrangement as netrins −1 and −4. This phenomenon is thought to play a role in the signaling behavior of UNC-6 and its ability to move throughout the extracellular matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.