Abstract

Two- and three-dimensional (2D and 3D) NMR techniques have been used to assign the signals from nearly all of the protons in Lactobacillus casei dihydrofolate reductase (DHFR) (M(r) 18,300) in its 1:1 complex with the antibacterial drug trimethoprim. A sample of uniformly 15N-labeled protein was examined using 3D 15N/1H experiments [nuclear Overhauser, heteronuclear multiple quantum coherence (NOESY-HMQC) and total correlation, heteronuclear multiple quantum coherence (TOCSY-HMQC) experiments]. Twenty-two intermolecular NOEs between trimethoprim and protein protons and four intramolecular NOEs in the ligand have been detected. Some were obtained by using heteronuclear editing and 2D HMQC-NOESY experiments on complexes formed with 15N-and 13C-labeled trimethoprim molecules ([1,3-15N2,2-amino-15N]-and [7-13C,4'-methoxy-13C]trimethoprim) bound to unlabeled protein. The ligand-protein NOEs were used as distance constraints in conjunction with minimum energy and simulated annealing calculations (carried out with X-PLOR) to dock the trimethoprim ligand into dihydrofolate reductase, using as a starting structure the crystal coordinates from a related complex with a similar overall protein structure. The restrained minimum energy calculations and the simulated annealing calculations gave 83 calculated structures with distance violations of < 0.1 A. In all of these, the two aromatic rings of trimethoprim occupied essentially the same region of conformational space in the binding site (RMSD = 0.63 A). The protein residues nearest to the bound trimethoprim were found to be very similar in all of the structures and agreed well with corresponding contact residues observed in the X-ray crystal studies on trimethoprim complexes formed with Escherichia coli and chicken liver DHFRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call