Abstract
Bacteriophage PRD1 is a prototype of viruses with an internal membrane. The icosahedral capsid and major coat protein share structural similarity with the corresponding structures of adenovirus. The present study further explores similarities between these viruses, considering the 5-fold vertex assemblies. The vertex structure of bacteriophage PRD1 consists of proteins P2, P5, and P31. The vertex complex mediates host cell binding and controls double-stranded DNA delivery. Quaternary structures and interactions of purified spike proteins were studied by synchrotron radiation x-ray solution scattering. Low resolution models of the vertex proteins P5, P2, and P31 were reconstructed ab initio from the scattering data. Protein P5 is a long trimer that resembles the adenovirus spike protein pIV. The receptor-binding protein P2 is a 15.5-nm long, thin monomer and does not have an adenovirus counterpart. P31 forms a pentameric base with a maximum diameter of 8.5 nm, which is thinner than the adenovirus penton pIII. P5 further polymerize into a nonameric form ((P5(3))(3)). In the presence of P31, P5 associates into a P5(6):P31 complex. The constructed models of these assemblies provided support for a model of vertex assembly onto the virion. Although similar in overall architecture, clear differences between PRD1 and adenovirus spike assemblies have been revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.