Abstract

Structures have been determined for a potent analogue of vasoactive intestinal peptide (VIP), Ac-[Lys12, Lys14, Nle17, Val26, Thr28]VIP (VIP'), in methanol/water solutions. In CD studies, both VIP and VIP' were helical in methanol/water, with the percentage of alpha-helix increasing with percentage methanol. The pH had little effect on the structure. Complete 1H NMR assignments were made for VIP' in 25% methanol at pH 4 and 6 and in 50% methanol at pH 6, using two-dimensional COSY, NOESY, and relay-COSY experiments. There were no widespread changes in chemical shifts between the samples at pH 4 and 6; however, widespread changes were observed between the samples in 25% and 50% methanol. Complete sets of NOEs were obtained for VIP' in 25% methanol, pH 4, and in 50% methanol, pH 6. These NOEs were converted into distance constraints and applied in molecular dynamics and energy minimization calculations using the program CHARMM. A set of low-energy structures was obtained for VIP' in each solvent system. In 25% methanol, VIP' has two helical segments at residues 9-17 and 23-28. The remainder of the structure is not well determined. In 50% methanol, residues 8-26 form a regular, well-defined alpha-helix and residues 5-8 form a type III beta-turn. The remaining residues are not ordered. These structural assessments agree with the CD data. In the lowest energy structure in 50% methanol, the side chains of Asp3, Phe6, Thr7, and Tyr10 are clustered together--these residues are conserved throughout the family of peptide hormones homologous to VIP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.