Abstract

Nucleic acid bulges have been implicated in a number of biological processes and are specific cleavage targets for the enediyne antitumor antibiotic neocarzinostatin chromophore in a base-catalyzed, radical-mediated reaction. The solution structure of the complex between an analog of the bulge-specific cleaving species and an oligodeoxynucleotide containing a two-base bulge was elucidated by nuclear magnetic resonance. An unusual binding mode involves major groove recognition by the drug carbohydrate unit and tight fitting of the wedge-shaped drug in the triangular prism pocket formed by the two looped-out bulge bases and the neighboring base pairs. The two drug rings mimic helical DNA bases, complementing the bent DNA structure. The putative abstracting drug radical is 2.2 +/- 0.1 angstroms from the pro-S H5' of the target bulge nucleotide. This structure clarifies the mechanism of bulge recognition and cleavage by a drug and provides insight into the design of bulge-specific nucleic acid binding molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.