Abstract
Different chemical reagents were used to study the tertiary structure of yeast tRNA Ser, a tRNA with a large variable region: ethylnitrosourea, which alkylates the phosphate groups; dimethylsulphate, which methylates N-7 of guanosine and N-3 of cytosine; and diethylpyrocarbonate, which modifies N-7 of adenine. The non-reactivity of N-3 of cytidine 47:1, 47:6, 47:7 and 47:8 and the reactivity of cytidine 47:3 confirms the existence of a variable stem of four base-pairs and a short variable loop of three residues. For the N-7 positions in purines, accessible residues are G1, G10, G m18, G19, G30, I34, G35, A36, i 6A37, G45, G47, G47:5, G47:9 and G73. The protection of N-7 atoms of residues G9, G15, A21, A22 and G47:9 reflects the tertiary folding. Strong phosphate protection was observed for P8 to P11, P20:1 to P22, P48 to P50 and for P59 and P60. A model was built on a PS300 graphic system on the basis of these data and its stereochemistry refined. While trying to keep most tertiary interactions, we adapted the tertiary folding of the known structures of tRNA Asp and tRNA Phe to the present sequence and solution data. The resulting model has the variable arm not far from the plane of the common L-shaped structure. A generalization of this model to other tRNAs with large variable regions is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.