Abstract

1H and 31P NMR spectroscopy have been used together with molecular modelling to determine the fine structure of a non-palindromic 16 bp DNA containing the NF-κB binding site. Much emphasis has been placed upon NMR optimization of both two-dimensional 31P NMR techniques to extract structural information defining the phosphodiester backbone conformation and selective homonuclear 2D COSY experiments to determine sugar conformations. NMR data show evidence for a dynamic behaviour of steps flanking the ten base-pairs of the NF-κB binding site. A BI-BII equilibrium at these steps is demonstrated and two models for each extreme conformation are proposed in agreement with NMR data. In the refined BII structures, the NF-κB binding site exhibits an intrinsic curvature towards the major groove that is magnified by the four flanking steps in the BII conformation. Furthermore, the base-pairs are translated into the major groove. Thus, we present a novel mode of dynamic intrinsic curvature compatible with the DNA curvature observed in the X-ray structure of the p50-DNA complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.