Abstract

Hepatoma-derived growth factor (HDGF)-related proteins (HRPs) comprise a new protein family that has been implicated in nephrogenesis, tumorigenesis, vascular development, cell proliferation, and transcriptional activation. All HRPs share a conserved N-terminal homologous to the amino terminus of HDGF (HATH) domain, but vary significantly in the C-terminal region. Here, we show that in solution the N and C termini of human HDGF form two structurally independent domains. The 100 amino acid residue N-terminal HATH domain is well-structured while the 140 amino acid residue C-terminal domain is disordered. We determined the solution structure of the HATH domain by NMR. The core structure of the HATH domain is a five-stranded beta-barrel followed by two alpha-helices, similar to those of PWWP domains of known structures. Surface plasmon resonance results showed that the HATH domain is primarily responsible for heparin binding. On the basis of the chemical shift perturbation induced by binding of heparin-derived hexasaccharide, we identified a prominent, highly positively charged region as the putative heparin-binding site. Sequence comparison and structure prediction suggest that all HRPs are likely to adapt a similar modular structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.