Abstract

AbstractWhen performing non‐linear finite element analyses during the design of large reinforced concrete structures, there is a need for a general, robust and stable solution strategy with a low modelling uncertainty which comprises choices regarding force equilibrium, kinematic compatibility and constitutive relations. In this paper, analyses of experiments with a range of structural forms, loading conditions, failure modes and concrete strengths show that an engineering solution strategy is able to produce results with good accuracy and low modelling uncertainty. The advice is to shift the attention from a detailed description of the post‐cracking behaviour of concrete to a rational description of the pre‐cracking compressive behaviour for cases where large elements are used and the ultimate limit capacity is sought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.