Abstract

The solution stability of the active materials poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61 butyric acid methyl ester (PCBM), and P3HT:PCBM blends were studied by a combination of organic photovoltaic (OPV) device performance, ultraviolet–visible (uv–vis) spectroscopy, and simulation calculations. OPV devices based on the structure ITO/PEDOT:PSS/Active layer (P3HT:PCBM)/Al showed that pure P3HT, pure PCBM, and P3HT:PCBM blend solutions could be stable for as long as one month when stored in either a glovebox or in air. Especially, P3HT:PCBM solution blends are much more stable than P3HT or PCBM solutions stored separately, in which the former could be stored stably over two months. The addition of PCBM to P3HT solution forms P3HT:PCBM dimers, avoiding the formation of charge transfer complexes. The calculation results showed that the electronic wave-function of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are isolated in P3HT:PCBM dimers. The research provides a new understanding on the stability of P3HT and P3HT:PCBM solutions, and has great practical application in the fabrication of large-area OPV modules by printing or coating techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.