Abstract

Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride ([BMIm]Cl) is reported using oscillatory and steady shear for cellulose concentrations from 0.1 to 10 wt %, spanning the dilute, semidilute unentangled, and entangled regimes. Although pure [BMIm]Cl is a crystalline solid at room temperature with a melting temperature of 65 °C, all solutions prepared at 75 °C are transparent and visually homogenous at 25 °C, and these supercooled solutions, with of order 0.1 wt % water, show no sign of crystallizing for months in either calorimetry or rheology measurements, allowing the potential for room temperature solution processing of native cellulose, such as fiber spinning. The overlap concentration of our cellulose in [BMIm]Cl is 0.5 wt % and the entanglement concentration is a factor of 4 larger (2 wt %). For semidilute unentangled solutions (between 0.5 and 2 wt %), the specific viscosity, relaxation time, and terminal modulus exhibit concentration dependences ηsp∼c2, τ∼c, and G∼c, respectiv...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call