Abstract

Solution based processing of porous and dense films by all-alkoxide based precursor systems have been investigated and compared, with a focus on the connection between the precursors and heat-treatment, and the product oxide quality and structure. Three systems were investigated typically with TGA, DSC, XPS, IR spectroscopy, X-ray diffraction, TEM-EDS and SEM-EDS, but also with other advanced characterisation techniques: (i) manganate and cobaltate perovskites of the LCMO (La0.67Ca0.33MnO3), LSMO (La0.75Sr0.25MnO3), LNCMO (La0.33Nd0.33Ca0.33MnO3), LBSM (La0.75Ba0.125Sr0.125MnO3) and LSCO (La0.50Sr0.50CoO3) compositions were investigated. Highly epitaxial films of LCMO and LSCO were prepared, and the CMR properties of the LCMO were comparable to those of PVD derived films. Polycrystalline films were prepared for all perovskites. (ii) Three routes to ZnO : Co/Al were investigated and compared; an acetate based route and two alkoxide based routes with different heat-treatments. With the acetate based and the alkoxide based route using hydrolysis in air, a maximum Co doping of 6% was obtained, while in absence of CO2 and O2, the doping range could be extended to 20%Co. Both dense films and porous nano-structured films were prepared. The magnetic properties of the Co-doped films did not show any room-temperature ferro-magnetism. (iii) ZrO2 and NbO2.5 doped anatase TiO2 were prepared by heat-treatment or hydrothermal routes. Alio-valent doping of up to more than 35% of NbO2.5 could be achieved in the anatase. It is believed that the pentavalent metal doping is compensated by metal vacancies, and as expected from this assumption, the materials have a low density. ZrO2 doping in titania led to an increase in the dye-sensitised solar cell efficiency and highly active and stable photo-catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.