Abstract
We demonstrate solution-processed zinc tin oxide thin-film transistors (TFTs) with a patterned-gate configuration. High- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$k$</tex></formula> and solution-processed zirconium oxide <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$(\hbox{ZrO}_{2})$</tex></formula> was employed to lower down the operating voltage. Devices with recessed and nonrecessed gate electrodes were compared to study the influence of gate surface relief on the performance of the solution-processed thin films. The TFTs with the recessed gate electrode operate at 5 V and have a threshold voltage of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim$</tex></formula> 1 V, subthreshold slope of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim$</tex></formula> 0.23 V/dec, saturation mobility of 2.5 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{cm}^{2}/\hbox{V} \cdot \hbox{s}$</tex></formula> , and on/off current ratio of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$> \hbox{10}^{6}$</tex></formula> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Electron Device Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.