Abstract

Antimony selenide (Sb2Se3) is a promising light absorber material for solar cells because of its superior photovoltaic properties. However, the current performance of the Sb2Se3 solar cell is much lower than its theoretical value (∼32%) due to its low open-circuit voltage (VOC). In this paper, we have demonstrated inorganic vanadium oxides (VOx) as a hole transport layer (HTL) for Sb2Se3 solar cells to enhance efficiency through the VOC improvement. Here, a solution-processed VOx through the decomposition of the triisopropoxyvanadium (V) oxide is deposited on the Sb2Se3 absorber layer prepared by close-spaced sublimation (CSS). With VOx HTL, the built-in voltage (Vbi) is significantly increased, leading to improved VOC for the Sb2Se3 solar cell devices. As a result, the efficiency of the device increases from an average efficiency of 5.5% to 6.3% with the VOx.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call