Abstract

Exploring new materials and structures to construct synaptic devices represents a promising route to fundamentally approach novel forms of computing. Nanocrystals (NCs) of halide perovskites possess unique charge transport characteristics, i.e., ionic-electronic coupling, holding considerable promise for energy-efficient and reconfigurable artificial synapses. Herein, we report solution-processed thin-film memristors from all-inorganic CsPbBr3 perovskite NCs, functioning as an electrically programmable analog memory with good stability. The devices are demonstrated to successfully emulate a number of essential synaptic functions with low power consumption, including reversible potentiation and depression, short-term plasticity (STP), paired-pulse facilitation (PPF), and long-term plasticity (LTP), such as spike-number-dependent plasticity (SNDP), spike-rate-dependent plasticity (SRDP), spike-timing-dependent plasticity (STDP), and spike-voltage-dependent plasticity (SVDP). It is proposed that a coupled capacitive and inductive phenomenon originating from charge trapping and ion migration in CsPbBr3 NC films, controlled by the amplitude and timing of the programming pulses, defines the degree of synaptic plasticity. A transition emerges from the fast trap-related capacitive regime to a slow ionic inductive regime, which enables continuous change of the film resistance and the magnitude of the electronic current, analogous to the synaptic weight modulation in biological synapses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call