Abstract

Organic-inorganic hybrid photodetectors have attracted increased interest due to their exceptional properties, such as flexibility, transparency, and low cost for many promising applications. Low-dimensional tungsten disulfide (WS2) nanostructures have outstanding electrical and optical properties, making them ideal candidates for ultrasensitive photodetector devices. In this paper, photodetectors were fabricated with hybrid thin films containing two different WS2 nanomaterials, one-dimensional (1D) WS2 nanotubes (WS2-NTs) and a zero-dimensional (0D) WS2 nanofullerene (WS2-FLs) hybrid with poly(N-vinyl carbazole) (PVK). The electrical responses of the devices under visible-light illuminations were studied. The photodetector devices with 0D WS2-FLs/PVK hybrid thin films have relatively higher sensitivity and stable voltage responses to visible light. Besides, the hybrid film shows a strong surface-enhanced Raman effect (SERS). These materials and new strategies enable the creation of a new class of processed photodetectors for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.