Abstract

The indium-tin-oxide/active layer interface is critical to the performance of organic solar cell devices. In this study, submonolayer films of LiF nanoparticles are deposited on the electrode surface with the assistance of polymeric micelle reactors, with controlled nanoscale surface coverage. Incorporation of the solution-processed bi-layer electrodes into a conventional poly(3-hexyl-thiophene): [6,6]-phenyl C61-butyric acid methyl ester device shows significant improvement in device performance, especially when used in combination with a poly(3,4-ethylenedioxythiophene: poly(styrene sulfonate) layer. The nearly 5× improvement in the short circuit current and decrease in the contact resistance is mostly likely related to the increase in surface work function from the use of LiF nanoparticles. The results strongly indicate that engineering of the interfaces is a useful tool for future device optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.