Abstract

In solution-processed organic field-effect transistors (OFETs), the polymers with high level of lowest unoccupied molecular orbitals (LUMOs, > −3.5 eV) are especially susceptible to electron-trapping that causes low electron mobility and strong instability in successive operation. However, the role of high-LUMO-level polymers could be different depending on their locations relative to the semiconductor/insulator interface, or could even possibly benefit the device in some cases. We constructed unconventional polymer heterojunction n-type OFETs to control the location of the same polymer with a high LUMO level, to be in, under, or above the accumulation channel. We found that although the devices with the polymer in the channel suffer from dramatic instability, the same polymer causes much less instability when it acts as a dielectric modification layer or charge injection layer. Especially, it may even improve the device performance in the latter case. This result helps to improve our understanding of the electron-trapping and explore the value of these polymers in OFETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call