Abstract

Here, we report solid solution of p- and n-type organic semiconductors as a new type of p-n blend for solution-processed ambipolar organic thin film transistors (OTFTs). This study compares the solid-solution films of silylethynylated tetraazapentacene 1 (acceptor) and silylethynylated pentacene 2 (donor) with the microphase-separated films of 1 and 3, a heptagon-embedded analogue of 2. It is found that the solid solutions of (1)x(2)1-x function as ambipolar semiconductors, whose hole and electron mobilities are tunable by varying the ratio of 1 and 2 in the solid solution. The OTFTs of (1)0.5(2)0.5 exhibit relatively balanced hole and electron mobilities comparable to the highest values as reported for ambipolar OTFTs of stoichiometric donor-acceptor cocrystals and microphase-separated p-n bulk heterojunctions. The solid solution of (1)0.5(2)0.5 and the microphase-separated blend of 1:3 (0.5:0.5) in OTFTs exhibit different responses to light in terms of absorption and photoeffect of OTFTs because the donor and acceptor are mixed at molecular level with π-π stacking in the solid solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.