Abstract

This paper presents a low temperature, solution-based processing method of highly transparent, sparse networks of carbon nanotubes via annealing process that dramatically improves the conductivity of thin films of octadecylamine functionalized highly soluble single-wall carbon nanotubes by up to five orders of magnitude. This increase in conductivity obtained at low temperatures allows for the creation of transparent conducting carbon nanotube (CNT) films via printed deposition of contacts for photovoltaic, light emitting, and display devices. An increase in films conductivity has been shown with process temperatures of 200°C at normal atmospheric pressure. The dependence between the sheet resistance of CNT layers and the annealing parameters is analyzed together with Raman and FTIR data, suggesting a relationship between the loss of octadecylamine functional groups along with the healing of CNT defects during the annealing process and the dramatic conductivity improvement of CNT layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call