Abstract

Organic p–n bilayer photodiodes were produced by solution casting poly(3-hexylthiophene) (P3HT) from chlorobenzene and phenyl-C61-butyric acid methyl ester (PCBM):poly(4-chlorostyrene) (PClS) blends from the nearly orthogonal solvent dichloromethane onto flexible indium tin oxide (ITO)/polyester as a substrate. This is the first demonstration of PCBM–inert polymer blends for such a device. The electron mobility of a 90% PCBM–10% PClS blend was 3.5×10−3cm2/Vs in a field-effect transistor. The diodes showed a rectification ratio of 2.0×103 at ±2.0V with a forward bias current density as high as 340μA/cm2 at 2.0V in the dark. Irradiation with various light sources (0.013–291mW/cm2) under ambient atmosphere generated a linear increase in photocurrent. Photodiodes with thinner active layers showed larger photocurrent and relative photoresponse, probably because of lower series resistance and lower recombination probability. The reverse bias response was less dependent on device area than the forward bias response. Photocurrents from multiple devices in parallel were additive as expected. The results demonstrate a simple fabrication route to light detectors compatible with solution processes and flexible substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.