Abstract

Two homoleptic and heteroleptic cyclometalated iridium complexes containing the 2-phenylbenzothiozole derivative as the main ligand, 1 and 2, have been synthesized and characterized as efficient orange-red phosphors. Triarylamine was introduced as an important substituent into the 6-position of the benzothiazole ring to tune the photonic and electronic properties of these complexes. Different from most of small molecular iridium complexes, 1 and 2 are solution-processable and their neat films can be obtained by a spin-coating method. Furthermore, their homogeneously dispersed films in a small molecular matrix, 4,4′-N,N′-dicarbazolebiphenyl (CBP), were successfully prepared by solution method even with low doping levels. Organic light-emitting diodes (OLEDs) were fabricated by solution processing the emitting layer containing 1 and 2 as doped emitters in the CBP host. Efficient orange-red electroluminescence by using 5 wt% 2 as the dopant was realized with a maximum efficiency of 14.49 cd A−1 (7.38 lm W−1 and 8.73%) and Commission Internationale de l'Eclairage (CIE) coordinates of (0.60, 0.40), which are among the highest luminance efficiency ever reported for partially solution-processed red and orange-red OLEDs so far. In addition, two-element white OLEDs were achieved with these orange-red phosphors and the traditional blue emitter by spin coating the emission layer. A maximum luminance efficiency of 8.97 cd A−1 and CIE of (0.33, 0.35) were realized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.