Abstract

A novel solution-processable, efficient hole-transporting material 2,4,7-tri[2-(9-hexylcarbazole)ethenyl]-9,9-dihexylfluorene (FC), composed of a fluorenyl core and triple-carbazolyl terminals, is successfully synthesized and well characterized. The FC is a thermally stable, amorphous material because of its aromatic and asymmetric structure. The highest occupied molecular orbital (HOMO) level of FC is -5.21 eV, as determined by cyclic voltammetry, implying its applicability as a hole-transporting layer (HTL) to promote hole injection. Furthermore, the FC could be deposited by a spin-coating process to obtain a homogeneous HTL film, more convenient and cost-effective than conventional NPB which must be deposited by vacuum vapor deposition. When fabricated as multi-layer OLED [ITO/PEDOT:PSS/HTL(25 nm)/Alq3(50 nm)/LiF(0.5 nm)/Al(100 nm)], the maximum brightness (21,400 cd m(-2)) and current efficiency (3.20 cd A(-1)) based on the FC are superior to those using conventional NPB as the hole-transporting layer. In addition, a homogeneous FC film is readily prepared by simple wet processes (spin-coating). Our results indicate that the FC is a promising optoelectronic material which is readily processed by wet methods such as spin-coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call