Abstract

Blue emitters with outstanding luminous performance must be synthesized for full-color organic light-emitting diode displays. The hybridized local and charge transfer (HLCT) is a remarkable excited state that combines the local and CT state to ensure a significant fluorescence quantum yield. The ambition of this study is to implement a subtle interpretation of photophysical and electroluminescence (EL) properties. To understand more about the geometry and orientations, the density functional theories were studied. Herein, we present a hybrid donor-π-acceptor blue-emitting fluorophore with a twisted geometry, in which triphenylamine (TPA) acts as a donor, 9,9 diethylfluorene acts as a spacer, and benzilimidazole acts as an acceptor. The EL spectra of the device are very similar to spectra of photoluminescence in the solution phase. Among all, the best performing 15 wt % MCFBI-fl-TPA-based OLED device illustrates a maximum luminance of 3290 cd/m2. The device shows 8.2 lm W–1 of power efficiency, 7.9 cd A–1 of current efficiency, and 3.5% of high external quantum efficiency with (0.20, 0.23) of CIE coordinates of the device emitting blue color.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.