Abstract
Spore photoproduct lyase (SPL) catalyzes the repair of the UV lesion spore photoproduct (SP) in a reaction dependent on S-adenosyl-L-methionine (SAM). We have utilized H/D exchange to show that in the presence of SAM, a significant reduction in H/D exchange is observed upon binding SPTpT or undamaged oligonucleotide, indicating a shift of 20 or 10 amide protons, respectively, from a rapidly-exchangable state to a fully-protected conformation. In the absence of SAM, neither the oligonucleotide nor the SPTpT produce a significant perturbation in H/D exchange, indicating SAM is a requisite binding partner. Performing the same experiments in aerobic conditions reduced the magnitude of ligand-induced structural changes, consistent with the importance of the oxygen-sensitive iron-sulfur cluster for SAM and substrate binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.