Abstract
SummaryThe application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block with a model DNA-conjugate. We exemplify the value of this technique with a challenging reaction, the Pictet-Spengler, where acidic conditions are normally required to achieve the desired cyclization between tryptophan and aldehydes to provide tryptolines. This is the first demonstration of using a machine learning algorithm to cull potential building blocks prior to their purchase and testing for DNA-encoded library synthesis. Importantly, this allows for a challenging reaction, with an otherwise very low building block pass rate in the test reaction, to still be used in DEL synthesis. Furthermore, because our protocol is solution phase it is directly applicable to standard plate-based DEL synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.