Abstract
Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor-acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent with a globule-like conformation in a poor solvent. Overall, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.