Abstract

The branches of solutions of a nonlinear integral equation of Volterra type in a Banach space are constructed by the successive approximation method. We consider the case in which a solution may have an algebraic branching point. We reduce the equation to a system regular in a neighborhood of the branching point. Continuous and generalized solutions are considered. General existence theorems are used to study an initial-boundary value problem with degeneration in the leading part.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.