Abstract

Research in the basic sciences is a critical factor in the development of the civil engineering industry. Solving the problems of radiation-convective heat transfer from heated surfaces has always aroused interest from the point of view of science and practical engineering application of knowledge. However, analytical solutions to these problems are obtained for elementary cases, for example, for infinite plates heated uniformly, or the propagation of heat waves in them obeys certain laws. The solution of the coupled problem of radiation-convective transfer from the surface of these panels is complicated not only by the geometric shape, but also by the openness of the entire thermophysical system, which includes the transfer of thermal energy from the coolant (coolant for cooling systems) to the surface of the thermal panel, from the panel to the room air by convection, and radiation to surrounding bodies (enclosing structures, furniture, people). In turn, additional heat exchange by convection occurs between the air and the enclosing structures. This article considers the possibility of obtaining an analytical solution to the problem of temperature distribution on the surface of a plate with two heat sources. When deriving the formulas, the classical equations of thermodynamics (Newton-Richmann, Fourier’s law, Helmholtz equation) were used. The general solution of the differential equation, in this case, is a linear combination of the Infeld and MacDonald functions. The research results can be applied to various areas of technical sciences: cooling of microprocessors, renewable sources of thermal energy, thermal and cooling panels for industrial production, automotive, marine shipbuilding, and of course heating and air conditioning systems for buildings and transport.

Highlights

  • Solving the problems of radiation-convective heat transfer from heated surfaces has always aroused interest from the point of view of science and practical engineering application of knowledge. Analytical solutions of these problems are obtained for elementary cases, for example, for infinite plates, plates heated uniformly, or the propagation of heat waves in them obeys certain laws [1-10]

  • A review of modern works on this issue showed that to determine the thermal characteristics of thermal panels, the solution of analytical equations is rarely used, and, as a rule, exclusively for solving the problem of radiation heat transfer [11-14]

  • The analytical problem is solved for a plate with two sources of thermal energy, the temperature at the boundary, known in advance of 95 and 70 ° C

Read more

Summary

Introduction

Solving the problems of radiation-convective heat transfer from heated surfaces has always aroused interest from the point of view of science and practical engineering application of knowledge. In this regard, thermal panels are quite complex objects from the point of view of mathematical description, and each of their designs is a special case. A review of modern works on this issue showed that to determine the thermal characteristics of thermal panels, the solution of analytical equations is rarely used, and, as a rule, exclusively for solving the problem of radiation heat transfer [11-14]. The method of numerical modeling [15-18], experimental studies on finished samples [19-21], and in some cases a combination of numerical modeling and experimental research [22] are used more often

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.