Abstract

The problem of stationary heat conduction of laminated plates of constant and variable thickness is formulated in the three-dimensional statement. We reduce the three-dimensional problem to a twodimensional one by the method of initial functions. For plates with layers of variable thickness, a system of resolving equations with variable coefficients is obtained. The obtained two-dimensional boundary-value problems are analyzed. For plates with homogeneous layers of constant thickness, we construct a solution in an analytic form. It is shown that this solution coincides with a solution obtained by the method of separation of variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.