Abstract

AbstractA singular function boundary integral method (SFBIM) is proposed for solving biharmonic problems with boundary singularities. The method is applied to the Newtonian stick–slip flow problem. The streamfunction is approximated by the leading terms of the local asymptotic solution expansion which are also used to weight the governing biharmonic equation in the Galerkin sense. By means of the divergence theorem the discretized equations are reduced to boundary integrals. The Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers, the values of which are calculated together with the singular coefficients. The method converges very fast with the number of singular functions and the number of Lagrange multipliers, and accurate estimates of the leading singular coefficients are obtained. Comparisons with the analytical solution and results obtained with other numerical methods are also made. Copyright © 2005 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.