Abstract

We solve the Percus-Yevick equation in even dimensions by reducing it to a set of simple integrodifferential equations. This work generalizes an approach we developed previously for hard disks. We numerically obtain both the pair correlation function and the virial coefficients for a fluid of hyperspheres in dimensions d = 4, 6, and 8, and find good agreement with the available exact results and Monte Carlo simulations. This paper confirms the alternating character of the virial series for d > or = 6 and provides the first evidence for an alternating character for d = 4. Moreover, we show that this sign alternation is due to the existence of a branch point on the negative real axis. It is this branch point that determines the radius of convergence of the virial series, whose value we determine explicitly for d = 4, 6, 8. Our results complement, and are consistent with, a recent study in odd dimensions [R. D. Rohrmann et al., J. Chem. Phys. 129, 014510 (2008)].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.