Abstract

The paper describes a numerical solution method for the point contact elastohydrodynamic lubrication (EHL) problem under non-Newtonian, isothermal conditions. The theoretical formulation of the non-Newtonian effect is general and may be applied to both shear thinning and limiting shear stress behaviour. The particular rheological model investigated in this work is the Eyring ‘sinh law’ relation. The numerical solution of the lubrication equations is based upon a control volume approach rather than the more usual methods that utilize a modified Reynolds equation. This new approach ensures that flow continuity is satisfied at the discretization level. Results are presented to show the effect of non-Newtonian behaviour on film thickness and pressure distribution in circular EHL contacts operating over a range of slide-roll ratios from 0 (pure rolling) to 1.5. Under conditions of pure rolling or low sliding there is found to be little effect of non-Newtonian behaviour, but at the highest degree of sliding the film thickness over the central, flattened area of the contact is reduced by up to 10 per cent at the highest rolling speed of 0.75 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.