Abstract

A method is described for solving the energy-dependent neutron diffusion equation by first factorizing the flux into a spatial shape function with weak energy dependence and a spectral function, then developing coupled equations for these two functions which must be solved iteratively. Numerical procedures used to solve these equations combine internally, and in a self-consistent fashion, a fine-group spectrum calculation with a broad-group spatial calculation. Numerical examples, based on representative fast-reactor models, are presented to demonstrate that this space-energy factorization method constitutes an accurate and economical approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.