Abstract

In a curvilinear well, the casing functions as a long continuous rod. It is installed on the supports-centralizers and replicates the complex profile of the well, as a result of which it receives large deformations. To describe them, a system of differential equilibrium equations of internal and external forces and moments was composed, which was supplemented to a closed form with a differential equation of curvature. It is non-uniform, because it takes into account the own distributed weight of the rod. Two ways are proposed to solve the problem: by the method of mathematical compression of the system equations into a complex inhomogeneous differential equation or by projecting the equilibrium equations of forces on the global (vertical-horizontal) and on the local (tangent-normal) coordinate systems. It is shown that the first integral of the system can also be found from the equilibrium equations of a portion of a curved rod of finite length. This integral has the form of a second-order inhomogeneous differential equation with variable coefficients and is the main equation that describes the deformation of a long elastic rod under the action of the longitudinal and transverse components of the forces of distributed weight. The main requirement of the technology is the installation of a pipes column on the centering supports, the purpose of which is to ensure the coaxiality of the pipes and the borehole walls and the creation between them a cement ring of the same thickness and strength. Accounting for this requirement allowed us to linearize the main equation. Its solution is the clue to the formulas of deflections, angular slopes, internal bending moments and transverse forces in the rod with the arbitrary arrangement of supports and boundary conditions in their intersections. The solution of the main differential equation of angular deformations of a long bar is found in the form of a linear combination of Airy and Scorer’s functions and in the form of three linearly independent polynomial series in the sum with a partial solution. The obtained formulas of flexure and power parameters allow us to calculate stress and strain in the pipes column during the process of casing the borehole of an arbitrary profile which increases the reliability and durability of the well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.