Abstract

An analytical solution of the inverse spectroscopic ellipsometry problem for a transparent layer on an absorbing substrate is obtained based on the envelope function approximation. It is used to determine the spectral dependences of the refractive index n(λ) and absorption k(λ) for model and real silicon substrates with silicon dioxide layers. It was possible to determine analytically the effective optical characteristics of the silicon substrate in the approximation of a layer-substrate model with ideal interface boundaries. This result, together with the relative positions of the spectral curves for the ellipsometric angles tan ψ(λ) and cos Δ(λ) measured for a silicon substrate with a natural surface layer and for a silicon dioxide layer–silicon substrate structure, can be explained by the fact that the silicon dioxide layer is surrounded by transition and surface layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.